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What are Graphical Models?



Reasoning under uncertainty!



Three Fundamental Questions

Representation

 How to capture/model uncertainty in possible worlds?

 How to encode our domain knowledge/assumptions/constraints?

Inference 

 How do I answer questions/queries according to my model and/or 

based on given data?

Learning

 What model is “right” for my data?



Recap of Basic Prob. Concepts
Representation: what is the joint prob. distribution on multiple variables

 How many state configurations in total? 

 Are they all needed to be represented?

 Do we get any scientific/medical insight?

Learning: where do we get all this probabilities?
 Maximum likelihood estimation? But how many data do we need?

 Are there other estimation principles?

 Where do we put domain knowledge in terms of plausible relationships between 
variables, and plausible values of probabilities?

Inference: if not all variables are observable, how to compute the conditional 
distribution of latent variables given evidence?
 Computing p(H|A) would require summing over all       configurations of the 

unobserved variables
2 6



What is a Graphical Model?

A multivariate distribution in high-dimensional space!

A possible world for cellular signal transduction:



GM: Structure Simplifies Representation

Dependency/Independency among variables:



Probabilistic Graphical Models

If Xi’s are conditionally independent (as described by a PGM), the 

joint can be factorized into a product of simpler terms, e.g.: 

Why we may favor a PGM?

 Incorporation of domain knowledge and causal (logical) structures

 How many parameters in the above factorized distribution?



PGM: Data Integration

More examples:

 Text + Image + Network  Holistic Social Media



Probabilistic Graphical Models

If Xi’s are conditionally independent (as described by a PGM), the 
joint can be factorized into a product of simpler terms, e.g.: 

Why we may favor a PGM?

 Incorporation of domain knowledge and causal (logical) structures
 How many parameters in the above factorized distribution?

 Modular combination of heterogeneous parts – data fusion!



Rational Statistical Inference

The Bayes Theorem

This allows us to capture uncertainty about the model in a 

principled way

But how can we specify and represent a complicated model?



PGM: MLE and Bayesian Learning

Probabilistic statements of     is conditioned on the values of 

the observed variables and prior
£



Probabilistic Graphical Models

If Xi’s are conditionally independent (as described by a PGM), the 
joint can be factorized into a product of simpler terms, e.g.: 

Why we may favor a PGM?
 Incorporation of domain knowledge and causal (logical) structures

 How many parameters in the above factorized distribution?

 Modular combination of heterogeneous parts – data fusion
 Bayesian philosophy

 Knowledge meets data



So What is a PGM after all?

The informal blurb:
 It is a smart way to write/specify/compose/design exponentially 

large prob. distributions without paying an exponential cost, and at 
the same time endow the distributions with structured semantics

A more formal description:
 It refers to a family of distributions on a set of RVs that are 

compatible with all the probabilistic independence propositions 
encoded by the graph that connects these variables



Two Types of PGMs

Directed edges give causality relationships (Bayesian 

Network or Directed Graphical Models)

Undirected edges give correlations between variables 

(Markov Random Field or Undirected Graphical Models)



Bayesian Networks

Structure: DAG

Meaning: a node is 
conditionally independent
of every other node in the 
network outside its Markov 
blanket

Local conditional distributions 
(CPD) and the DAG completely 
determine the joint distribution



Markov Random Fields

Structure: undirected graph

Meaning: a node is 
conditionally independent 
of every other node in the 
network given its Direct 
Neighbors

Local contingency functions 
(potentials) and the cliques in 
the graph completely determine 
the joint distribution



Towards Structural Specification of 

Probability Distribution

Separation properties in the graph imply independence properties 

about the associated variables

For the graph to be useful, any conditional independence 

properties we can derive from the graph should hold for the 

probability distribution that the graph represents

The Equivalence Theorem:

 For a graph G,

 Let       denote the family of distributions that satisfy I(G),

 Let       denote the family of distributions that factor according to G,

 Then 

D 1

D 2

D 1 = D 2



GMs are your old friends

Clustering 

 GMMs

Regression

 Linear, conditional mixture

Classification

 Generative and discriminative approach

Dimension reduction

 PCA, FA, etc



An (incomplete) 

genealogy of 

graphical models

Picture by Zoubin

Ghahramani & Sam 

Roweis



Application of PGMs

Machine learning

Computational statistics

Computer vision and graphics

Natural language processing

Information retrieval

Robot control

Decision making under uncertainty

Error-control codes

Computational biology

Genetics and medical diagnosis/prognosis

Finance and economics

Etc.



Why graphical models

A language for communication

A language for computation

A language for development

Origins:

 Independently developed by Spiegelhalter and Lauritzen in 

statistics and Pearl in computer science in the late 1980’s



Why graphical models 
Probability theory provides the glue whereby the parts are 
combined, ensuring that the system as a whole is consistent, and 
providing ways to interface models to data

The graph theoretical side of GMs provides both an intuitively 
appealing interface by which humans can model highly-interacting sets 
of variables as well as a data structure that lends itself naturally to the 
design of efficient general-purpose algorithms

Many of the classical multivariate probabilistic systems studied 
in the fields such as statistics, systems engineering, information theory, 
pattern recognition and statistical mechanics are special cases of the 
general graphical model formalism

The graphical model framework provides a way to view all of these 
systems as instances of a common underlying formalism

--- M. Jordan



Bayesian Networks



Example: The dishonest casino

A casino has two dice:

 Fair die: P(1)=P(2)=…=P(6)=1/6

 Loaded die: P(1)=P(2)=…=P(5)=1/10; 
P(6)=1/2

Casino player switches back & forth between 
fair and loaded die once every 20 turns

Game:

 You bet $1

 You roll (always with a fair die)

 Casino player rolls (maybe with fair die, maybe 
with loaded die)

 Highest number wins $2



Puzzles regarding the dishonest casino

Given: a sequence of rolls by the casino player

Questions:

 How likely is this sequence, given our model of how the casino 

works?

 This is the EVALUATION problem

 What portion of the sequence was generated with the fair die, and 

what portion with the loaded die?

 This is the DECODING problem

 How “loaded” is the loaded die? How “fair” is the fair die? How often 

does the casino player change from fair to loaded, and back?

 This is the LEARNING problem



Hidden Markov Models （HMMs)



Probability of a parse

Given a sequence 

and a parse

To find how likely is the parse: (given our HMM and the 

sequence)

 Marginal probability:

 Posterior probability:

We will learn how to do this explicitly (polynomial time)



Bayesian Networks in a Nutshell

A BN is a directed graph whose nodes represent the RVs and 
whose edges represent direct influence of one variable on another

It is a data structure that provides the skeleton for representing a 
joint distribution compactly in a factorized way

It offers a compact representation for a set of conditional 
independence assumptions about a distribution

We can view the graph as encoding a generative sampling 
process executed by nature, where the value for each variable is 
selected by nature using a distribution that depends only on its 
parents.



Bayesian Network: Factorization Theorem

Theorem:

 Given a DAG, the most general form of the probability 

distribution that is consistent with the graph factors according 

to “node given its parents”:

 where       is the set of parents of Xi, d is the number of nodes 

(variables) in the graph



Specification of a Directed GM

There are two components to any GM:

 The qualitative specification

 The quantitative specification



Qualitative Specification

Where does the qualitative specification come from?

 Prior knowledge of causal relationships

 Prior knowledge of modular relationships

 Assessment from experts

 Learning from data

 We simply link a certain architecture (e.g., a layered graph)

 …



Local Structure & Independence

Common parent

 Fixing B decouples A and C

Cascade

 Knowing B decouples A and C

V-structure

 Knowing C couples A and B because A 
can “explain away” B w.r.t C

The language is compact, the concepts 
are rich!



I-Maps



Facts about I-map

For G be an I-map of P, it is necessary that G does not mislead us 

regarding independencies in P:

 Any independence that G asserts must also hold in P. 

 Conversely, P may have additional independencies that are not 

reflected in G

Example: (who is P1 / P2’s I-map?)

Complete graph is an I-map for any distribution, right?

 Yet it does not reveal any independence structure in the distribution



What is in I(G) – Local Markov 

Assumptions



Graph separation criterion



Active trail



What is in I(G) – Global Markov Property



Example

Complete the I(G) of this graph:



Toward quantitative specification of 

probability distribution

Separation properties in the graph imply independence 
properties about the associated variables

The Equivalence Theorem:

For the graph to be useful, any conditional independence 
properties we can derive from the graph should hold for the 
probability distribution that the graph represents



Conditional Probability Tables (CPTs)



Conditional Probability Density Functions 

(CPDs)



Summary of BN Semantics



Soundness and Completeness 



Soundness and Completeness 



Uniqueness of BN



Simple BNs: Conditionally Indep. 

Observations

The “Plate” Micro:



Hidden Markov Model: 

from static to dynamic mixture



Definition of HMM



Markov Random Fields



P-maps

Definition: A DAG G is a perfect map (P-map) for a 

distribution P is I(P) = I(G)

Theorem: not every distribution has a perfect map as DAG

 Proof by counterexample: suppose we have a model where

 This cannot be represented by any Bayes net



Undirected Graphical Models (UGM)

Pairwise (non-causal) relationships

Can write down model, and score specific configurations of 

the graph, but no explicit way to generate samples

Contingency constrains on node configuration



A Canonical Example: 

understanding complex scene



A Canonical Example

The grid model

Naturally arises in image processing, lattice physics, etc

Each node may represent a single “pixel”, or an atom
 The states of adjacent or nearby nodes are “coupled” due to pattern 

continuity or electro-magnetic force, etc
 Most likely joint-configurations usually correspond to a “low-energy” 

state



Representation



I. Quantitative Specification: 

Cliques



Interpretation of Clique Potentials



Example UGM – using max cliques



Example UGM – using subcliques



II: Independence Properties



Global Markov Properties



Local Markov Properties



Soundness and Completeness of global 

Markov property



Hammersley-Clifford Theorem



Perfect maps



Exponential Form



Example: Boltzmann machines



Ising Model



Restricted Boltzmann Machines



Properties of RBM



Conditional Random Fields



Conditional Models



Conditional Distribution



CRFs



Summary: Cond. Indep. Semantics in MRF



Where does the graph structure come 

from?



Information Theoretical Interpretation of 

ML

M: # of data samples



Information Theoretical Interpretation of 

ML

For the fully observable case



Structural Search

How many graphs over n nodes?

How many trees over n nodes?

But it turns out that we can find exact solution of an optimal 

tree (under MLE)!

 Trick: in a tree each node has only one parent!

 Chow-Liu algorithm (1968)



Chow-Liu tree learning algorithm

Objective function

Chow-Liu algorithm:



Chow-Liu tree learning algorithm

Objective function

Chow-Liu algorithm:



Structure Learning for General Graphs



Summary
Undirected graphical models capture “relatedness”, “coupling”, “co-
occurrence”, “synergism”, etc. between variables
 Local and global independence properties via graph separation criteria
 Defined on clique potentials

Can be used to define either joint or conditional distributions

Generally intractable to compute likelihood due to presence of 
“partition function”
 Not only inference but also likelihood-based learning is difficult in general

Important special cases
 Ising models; RBMs; CRFs

Learning GM structure
 Generally NP-hard
 Chow-Liu tree learning algorithm
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