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What are Graphical Models?
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Reasoning under uncertainty!
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Three Fundamental Questions

@ Representation
o How to capture/model uncertainty in possible worlds?

o How to encode our domain knowledge/ assumptions/ constraints?

# Inference

o How do I answer questions/queries according to my model and/or

based on given data?

eg.: P(X,|D)

& Learning

o What model is “right” for my data?

e.g.. M =argmax F(D; M)

MeM




Recap of Basic Prob. Concepts

& Representation: what is the joint prob. distribution on multiple variables

P(XInXZﬂXBnXLInXS?XﬁDXTﬂXE)

o How many state configurations in total?
o Are they all needed to be represented?
o Do we get any scientific/medical insight?
& AR
4 Learning: where do we get all this probabilities?

o Maximum likelihood estimation? But how many data do we need?

o Are there other estimation principles?

o Where do we put domain knowledge in terms of plausible relationships between
variables, and plausible values of probabilities?

# Inference: if not all variables are observable, how to compute the conditional
distribution of latent variables given evidence?

o Computing p(H | A) would require summing over all  configurations of the
unobserved variables




What iIs a Graphical Model?

# A multivariate distribution in high—dimensional space!
& A possible world for cellular signal transduction:
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GM: Structure Simplifies Representation
& Dependency/ Independency among variables:

1

i [ReceptﬂrA ] X

i { Kinase C ] X;
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Probabilistic Graphical Models

@ If X’s are conditionally independent (as described by a PGM), the

joint can be factorized into a product of simpler terms, e.g.:

P(X,, Xp X3y X, X Xy X X)

= P(X)) P(X;) P(X;| X)) P(X,| X;) P(X{| X))
P(X,| X; X,) P(X;| X,) P(X,| X, Xy)

@ Why we may favor a PGM?

o Incorporation of domain knowledge and causal (logical) structures

How many parameters in the above factorized distribution?




PGM: Data Integration

[ReceptﬂrA ] X, Receptor B
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# More examples:
o Text + Image + Network = Holistic Social Media




Probabilistic Graphical Models

@ If X’s are conditionally independent (as described by a PGM), the

joint can be factorized into a product of simpler terms, e.g.:

Receptor A X, Receptor B

P(X ), X5 X5 Xy X5 X X Xp)
= P(X)) P(X,| X}) P(X;| X3)

@ Why we may favor a PGM?

a Incorporation of domain knowledge and causal (logical) structures

How many parameters in the above factorized distribution?

o Modular combination of heterogeneous parts — data fusion!




Rational Statistical Inference

# The Bayes Theorem
sterior Likelithood Prior : T“‘,ffj__ ’
E;)(:lt)ability l / probability h___
d|h)p(h
> p(d|h)p(h)
h'eH

el

Sum over space
of hypotheses

# This allows us to capture uncertainty about the model in a

principled way

# But how can we specify and represent a complicated model?




PGM: MLE and Bayesian Learning

# Probabilistic statements of

the observed variables and prior

e )
(ABCDE,. . )=(IEETE...)
A= (.\,l-‘}j_,lj,l, J=(LETTE,...)

(ABCDE,.. )=ETTTE...)

O = [0 P(O| A, 1) dO

is conditioned on the values of

PO[A; x) < p(A|O)p(@, ¥)
el 4 "

posterior likelihood prior

/




Probabilistic Graphical Models

@ If X’s are conditionally independent (as described by a PGM), the

joint can be factorized into a product of simpler terms, e.g.:

P{A,!H A-’Eq Aqu A-:’i A,j* -'Xfﬁ* -‘k,_?‘ "Xf{?)

= P(X)) P(X;) P(X;| X)) P(X,| X;) P(X{| X))
P(X4| X; X)) P(X;| X)) P(X;| X5 X)

@ Why we may favor a PGM?

a Incorporation of domain knowledge and causal (logical) structures

How many parameters in the above factorized distribution?
o Modular combination of heterogeneous parts — data fusion

o Bayesian philosophy

Knowledge meets data @—»O =




So What i1s a PGM after all?

# The informal blurb:

a It is a smart way to write/ specify/ compose/ design exponentially
large prob. distributions without paying an exponential cost, and at
the same time endow the distributions with structured semantics

LB ]
)] (b J] [CE]

=

(e  CHJ

P(X XX 3,X4,X5X4,X7,X3g) P(X5) = P(X)P(X)P(X; | X, XP(X, | X,)P(X5 | X5)
P(X | X3, X )P(X7| X )P(Xg|X5, Xy)

# A more formal description:

o It refers to a family of distributions on a set of RVs that are
compatible with all the probabilistic independence propositions
encoded by the graph that connects these variables




Two Types of PGMs

# Directed edges give causality relationships (Bayesian
Network or Directed Graphical Models)

P(X} Xy X5 Xy X5 X Xy Xp)

= P(X)) P(X;) P(X;| X)) P(X,| X5) P(XS| X5)
P(X | X; X,) P(X;| Xy) P(X;| X5 X))

# Undirected edges give correlations between variables
(Markov Random Field or Undirected Graphical Models)

P(X;, X5 X; Xy X5 X X5 XG)

= 1/Z exp{E(X,)+E(X,)+E(X,, X )+E(X, X))*E(X, X,)
+ E(Xy X5 X)FE(X» X)+EXp X5 X))}




Bayesian Networks
# Structure: DAG

# Meaning: a node is
conditionally independent
of every other node in the
network outside its Markov

blanket

# Local conditional distributions
(CPD) and the DAG completely

determine the joint distribution e




Markov Random Fields

# Structure: undirected graph

# Meaning: a node is
conditionally independent
of every other node in the
network given its Direct
Neighbors

# Local contingency functions
(potentials) and the cliques in
the graph completely determine
the joint distribution




Towards Structural Specification of
Probability Distribution

# Separation properties in the graph imply independence properties
about the associated variables

# For the graph to be useful, any conditional independence
properties we can derive from the graph should hold for the
probability distribution that the graph represents

# The Equivalence Theorem:
a For a graph G,
o Let  denote the family of distributions that satisty I(G),
o Let denote the family of distributions that factor according to G,

o Then |




GMs are your old friends -

@ Clustering
o GMMs e

& Regression

o Linear, conditional mixture

# Classification

o Generative and discriminative approach

# Dimension reduction
o PCA, FA, etc
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Application of PGMs

# Machine learning

4 Computational statistics

4 Computer vision and graphics

4 Natural language processing

# Information retrieval

# Robot control

# Decision making under uncertainty
# Error-control codes

# Computational biology

# Genetics and medical diagnosis/prognosis
4# Finance and economics

# Etc.




Why graphical models

& A language for communication
& A language for computation

#® A language for development

& Origins:
= Independently developed by Spiegelhalter and Lauritzen in

statistics and Pearl in computer science in the late 1980’s




Why graphical models

# Probability theory provides the glue whereby the parts are
combined, ensuring that the system as a whole is consistent, and
providing ways to interface models to data

# The graph theoretical side of GMs provides both an intuitively
appealing interface by which humans can model highly-interacting sets
of variables as well as a data structure that lends itself naturally to the
design of efficient general-purpose algorithms

4 Many of the classical multivariate probabilistic systems studied
in the fields such as statistics, systems engineering, information theory,
pattern recognition and statistical mechanics are special cases of the
general graphical model formalism

# The graphical model framework provides a way to view all of these
systems as instances of a common underlying formalism

--- M. Jordan




Bayesian Networks




Example: The dishonest casino

# A casino has two dice:

o Fair die: P(1)=P(2)=...=P(6)=1/6
o Loaded die: P(1)=P(2)=...=P(5)=1/10;
P(6)=1/2

# Casino player switches back & forth between
fair and loaded die once every 20 turns

# Game:
2 You bet §1
o You roll (always with a fair die)

a Casino player rolls (maybe with fair die, maybe

with loaded die)

= Highest number wins $2




Puzzles regarding the dishonest casino

# Given: a sequence of rolls by the casino player :

646214614612612666166416616:6616:6671636165156 6 6

# Questions:
o How likely is this sequence, given our model of how the casino
works?
This is the EVALUATION problem
o What portion of the sequence was generated with the fair die, and
what portion with the loaded die?
This is the DECODING problem
a2 How “loaded” is the loaded die? How “fair” is the fair die? How often
does the casino player change from fair to loaded, and back?
This is the LEARNING problem




Hidden Markov Models (HMMs)

The underlying
source:

SN O OSOIE O
genome function

dice

The sequence: e @ @ @
Phonemes

DNA sequence
sequence of rolls




™~

Probability of a parse 7)) —() ()

# Given a sequence x = x,...... Xt

andaparse}’=Y1=------=VT @ @ @ @

# To tind how likely is the parse: (given our HMM and the

sequence)

p(x.y) =px.....X5yn, ... 1) (Joint probability)
=p) p(xy [ y) pPOr | 1) p(xy | 12) - pOr | yrey) Pxr | 1)
=p) POu [ y) ... pOr | yra) X p(xy [ 1) p(xy [ 32) - pler [ yr)
=pVis ooy P X [ Y L )

o Marginal probability: »(x)= > p(x.y)= ZH Zw Z 7 1 1a...11px 1)
’ ' ) ) I=£ =1
o Posterior probability: p(y|x)= p(x,y)/ p(x)

# We will learn how to do this explicitly (polynomial time)

/




Bayesian Networks in a Nutshell

# A BN is a directed graph whose nodes represent the RVs and
whose edges represent direct influence of one variable on another

# It is a data structure that provides the skeleton for representing a
joint distribution compactly in a factorized way

# It offers a compact representation for a set of conditional
independence assumptions about a distribution

# We can view the graph as encoding a generative sampling
process executed by nature, where the value for each variable is
selected by nature using a distribution that depends only on its
parents.




Bayesian Network: Factorization Theorem

4 Theorem:

o Given a DAG, the most general form of the probability
distribution that is consistent with the graph factors according

to “node given its parents”:

P(X)=]]PX,[X,)

i=l:d
o where X is the set of parents of X,, d is the number of nodes

(variables) in the graph

P(X), Xy Xy, X X5 Xy X Xy)

::) = P(X)) P(X,) P(X,| X)) P(X,| X,) P(X{| X))
P(X4| X5 X)) P(X7| Xg) P(X3| X5, X)




Specification of a Directed GM

A There are two components to any GM:
o The qualitative specification

o The quantitative specification




Qualitative Specification

# Where does the qualitative specification come from?
a Prior knowledge of causal relationships
a Prior knowledge of modular relationships
o Assessment from experts
o Learning from data
o We simply link a certain architecture (e.g., a layered graph)

D e o o




Local Structure & Independence

# Common parent o

o Fixing B decouples A and C
A > o
# Cascade

2 Knowing B decouples A and C CA O <D <>

# V-structure

o Knowing C couples A and B because A Q a
can “explain away” B w.r.t C Q

# The language is compact, the concepts
are rich!




I-Maps

Defn : Let P be a distribution over X. We define I(P) to be the
set of independence assertions of the form (X L Y | Z) that
hold in P (however how we set the parameter-values).

Defn : Let K be any graph object associated with a set of
independencies |(K). We say that K is an I-map for a set of
iIndependencies |, I(K) c I.

We now say that G is an I-map for P if G is an I-map for I(P),
where we use |(G) as the set of independencies associated.




Facts about I-map

4 For G be an I-map of P, it is necessary that G does not mislead us
regarding independencies in P:
o Any independence that G asserts must also hold in P.

a Conversely, P may have additional independencies that are not

reflected in G

4 Example: (who is P1 / P2’s I-map?)

o, LT S — T —
( )( & & X Y |PX.Y) X Y |P(X.Y)
N l/ T*’ 2 U 0.08 ? 0 04
. . =] AT 0.32 P 0 g 0.3
ey i /.“r" y ( Yy ) 1 T S B ? el 4% 0.2
i § L1 ! b -.-'f = b -’r Ll
S~ - ) N al o 0.48 el g 0.1
G Uy_y Uy _x

4 Complete graph is an I-map for any distribution, right?

o Yet it does not reveal any independence structure in the distribution

/




What is in I(G) — Local Markov
Assumptions

A Bayesian network structure G is a directed acyclic graph whose
nodes represent random variables X, ... X,. .

local Markov assumptions

e Defn:

Let Pa,, denote the parents of X’ in G, and NonDescendants,, denote the
variables in the graph that are not descendants of .X.. Then G encodes the
following set of local conditional independence assumptions /,(G):

I{G): {X; L NonDescendants,, | Pa,;: V¥ i),

In other words, each node X is independent of its nondescendants given its
parents.




Graph separation criterion

e D-separation criterion for Bayesian networks (D for Directed
edges):

Defn: variables x and y are D-separated (conditionally
independent) given z if they are separated in the moralized
ancestral graph

e Example:

X
: X X -—--
2 Y
= z > =% z y

original graph ancestral moral ancestral




Active trail

e Causaltrail X - Z — Y : active if and
only if Z is not observed.

e Evidential trail X — Z < Y : active if
and only if Z is not observed.

e Common cause X — Z — Y : active if
and only if Z is not observed.

e Commoneffect X — Z «— Y : active if

and only if either Z or one of Z's
descendants is observed

Definition : Let X, ¥, Z be three sets of nodes in G. We say that Xand Y
are d-separated given Z, denoted d-sep XY | Z), if there is no active trail
between any node X € Xand Y € Y given Z.

/




What is in I(G) — Global Markov Property

e X is d-separated (directed-separated) from Z given Y if we can't
send a ball from any node in X to any node in Z using the "Bayes-
ball' algorithm illustrated bellow (and plus some boundary
conditions):

X ¥ £ A ¥ Z

© « Defn: I(6)=all independence
properties that correspond to d-

[a}}_
O
’;K A separation:
':/ _/ C{ \ :J
X £ X Z
@

[(G)= {X 1 Z‘Y : dscp[-;(X;Z\Y)}




Example
# Complete the I(G) of this graph:




Toward quantitative specification of
probability distribution

# Separation properties in the graph imply independence
properties about the associated variables

# The Equivalence Theorem:

For a graph G,
Let D, denote the family of all distributions that satisfy [(G),

Let D, denote the family of all distributions that factor according to

G,
P(X)=[]P(X,1X,)

Then 9,=9,. o
# For the graph to be usetul, any conditional independence
properties we can derive from the graph should hold for the
probability distribution that the graph represents




Conditional Probability Tables (CPTs)

0.75

0.25

DD

0.33

b1

0.67

P(a)P(b)P(c|a,b)P(d]|c)

P(a,b,c.d) =

abo a%b? a'bo a'b?
c? 0.45 1 0.9 0.7
c’ 0.55 0 0.1 0.3
cO c!
0.3 |05
07 (0.5




™~
Conditional Probability Density Functions

(CPDs)

P(a,b,c.d) =
A~N(y,, £,) B~N(p,, £,) P(a)P(b)P(c|a,b)P(d|c)

C~N(A+B, %)

. D~N(uq+C, Z,) - | . c
D




Summary of BN Semantics

e Defn : A Bayesian network is a pair (G, P) where P factorizes
over G, and where P is specified as set of CPDs associated
with G’s nodes.

e Conditional independencies imply factorization
e Factorization according to G implies the associated conditional independencies.

e Are there other independences that hold for every distribution P that factorizes
over G?




Soundness and Completeness
D-separation is sound and "complete" w.r.t. BN factorization law

Soundness:
Theorem: If a distribution P factorizes according to G, then I(G) c I(P).

"Completeness™:
"Claim": For any distribution P that factorizes over G, if (X LY | Z) € |(P)
then d-sepg(X; Y | Z).

Contrapositive of the completeness statement

e '"If XYand Y are not d-separated given Z in G, then X and Y are dependent in all
distributions P that factorize over G."

e s this true?




Soundness and Completeness

e No. Even if a distribution factorizes over G, it can still contain
additional independencies that are not reflected in the structure

e Example: graph A->B, for actually independent A and B Al »
(the independence can be captured by some subtle way :ll' :]}j Eg
of parameterization)

e Thm: Let G be a BN graph. If X and Y are not d-separated given Zin
G, then X and Y are dependent in some distribution P that factorizes

over G.

e Theorem : For almost all distributions P that factorize oulfer
G, l.e., for all distributions except for a set of "measure zero"
In the space of CPD parameterizations, we have that |(P) =

1(G)




Uniqueness of BN

e \ery different BN graphs can actually be equivalent, in that
they encode precisely the same set of conditional
iIndependence assertions.

) 4

5N oy
/‘<<Z\> X < >
I \f"‘(
2 J Z/
(a) (b) (c) (d)

X 1Y |2




e

Simple BNs: Conditionally Indep.
Observations

Model parameters

@ @---BD ® o

# The “Plate” Micro:

. Model parameters

é Data = {y,,...y,,}

i=1:n




e

Hidden Markov Model:
from static to dynamic mixture

Static mixture

Dynamic mixture




Definition of HMM

Observation space
Alphabetic set:  C ={c,.c,.--.c, |
Euclidean space: R¢

Index set of hidden states
~{2..M)
Transition probabilities between any two states
ply{ =11y, ==
or p(y,ly. =1~ Multmnmml(ﬂ, e af-_M),Vi el

Start probabilities
p(y,) ~ Multinomial(z,, 7.

Emission probabilities associated with each state

p(x, |yl =1)~ Multin(}mial(t:vfljh-_l,...,bj_x )_,\:ff el
or in general:

p(x, |y, =1)~1(-16,).Vi e




Markov Random Fields




P-maps

# Definition: A DAG G is a perfect map (P-map) for a
distribution P is I(P) = I[(G)

# Theorem: not every distribution has a perfect map as DAG
o Proof by counterexample: suppose we have a model where
ALC|{BD} and BL1D [{AC

o This cannot be represented by any Bayes net




Undirected Graphical Models (UGM)

Ca) &2

x (%)

# Pairwise (non-causal) relationships

# Can write down model, and score specific configurations of

the graph, but no explicit way to generate samples

& Contingency constrains on node configuration




e

A Canonical Example:
understanding complex scene

air or water ? -




A Canonical Example
# The grid model

# Naturally arises in image processing, lattice physics, etc

# Each node may represent a single “pixel”, or an atom

a0 The states of adjacent or nearby nodes are “coupled” due to pattern
continuity or electro-magnetic force, etc

o Most likely joint—configurations usually correspond to a “low—energy”
state




Representation

e Defn: an undirected graphical model represents a distribution
P(X,,...,X,) defined by an undirected graph H, and a set of
positive potential functions y_ associated with the cliques of
H, s.t.

1
P(Yl’ *3 ?} _Hv/r(xr)
Z ceC

where Z is known as the partition function:

Z = ZHV/(X)

X, ceC

e Also known as Markov Random Fields, Markov networks ...

e The potential function can be understood as an contingency
function of its arguments assigning "pre-probabilistic” score of
their joint configuration.

/




e
|. Quantitative Specification:

Cliques

e For G={V,E}, a complete subgraph (clique) is a subgraph
G={V'cV,EcE} such that nodes in V'are fully interconnected

e A (maximal) clique is a complete subgraph s.t. any superset
V"o V'is not complete.

e A sub-clique is a not-necessarily-maximal clique.

e Example: °

e max-cliques = {A,B,D}, {B,C,D},
e sub-cliques ={A,B}, {C,D}, ...=> all edges and singletons




-

Interpretation of Clique Potentials

O—0—>

e The model implies X1Z|Y. This independence statement
implies (by definition) that the joint must factorize as:

p(x.y.z)=py)px|y)pz|y)

o We can write thisas:  PXV-2)=PX.y)p(Z 1Y)yt
p(x.y.z)=p(x|y)p(z.y)

e cannot have all potentials be marginals
e cannot have all potentials be conditionals

e The positive clique potentials can only be thought of as

general "compatibility”, "goodness"” or "happiness” functions
over their variables, but not as probability distributions.

/




Example UGM - using max cliques

DO D
0 l /H
° V. (Xq24) V. (Xp34) "

[

P'(x{,X,,X3,Xx,) =Ef,/fc(3124)x';/fg(xz34)

Z= D W (X14) XV (Xp34)

A1.X2,X3.X4

e For discrete nodes, we can represent P(X,.,) as two 3D tables
instead of one 4D table




Example UGM — using subcliques

. 1
P (xy, X7, %3.%,) = ?HW{#(XU)

1

- 7 Wi (X W 10 (Xyg JW o3 (X3 W04 (X8 )W 34 (X34)

Z= > Jlv;&xp

Xy, Xp,X3,Xg  f

e We can represent P(X,.,) as 5 2D tables instead of one 4D table

e Pair MRFs, a popular and simple special case




I1: Independence Properties

e Now let us ask what kinds of distributions can be represented
by undirected graphs (ignoring the details of the particular
parameterization).

e Defn: the global Markov properties of a UG H are
I(H) = X L Z|V):sep,, (X;Z|1)]




Global Markov Properties
Let H be an undirected graph:

B separates A and C if every path from a node in A to a node
in C passes through a node in B: sep,, (4:C|B)

A probability distribution satisfies the global Markov property
If for any disjoint A, B, C, such tha? B separates Aand C, A is
independent of C given B: 1(H)=14 L ("\B :sepy; (4;C|B)




LLocal Markov Properties

e For each node X, € V, there is unique Markov blanket of X,
denoted MB,,, which is the set of neighbors of X. in the graph
(those that share an edge with X))

e Defn:

The local Markov independencies associated with H is:
I{H) X, LV —{X; } = MBy; | MBy, -V i),

In other words, X is independent of the rest of the nodes in the graph given
its immediate neighbors




4 N
Soundness and Completeness of global

Markov property

e Defn: An UG His an I-map for a distribution P if /(H) < I(If’),
l.e., P entails /(H).

e Defn: Pis a Gibbs distribution over H if it can be represented
as

1
P(Xlﬂ"'ﬂxn)zfnyfc(xc)

celC

e Thm (soundness): If Pis a Gibbs distribution over H, then H
Is an |-map of P.

e Thm (completeness): If —sep(X; Z|Y),then X £, Z |YIn
some P that factorizes over H.




Hammersley-Clifford Theorem

e Thm : Let P be a positive distribution over V, and H a Markov
network graph over V. If His an |-map for P, then P is a Gibbs
distribution over H.




Perfect maps

e Defn: A Markov network H is a perfect map for P if for anf/ X;
Y.Z we have that

sep, (X;ZY)ePE(X LZ|Y)

e Thm: not every distribution has a perfect map as UGM.

e Pfby counterexample. No undirected network can capture all and only the
independencies encoded in a v-structure X 2> Z < Y.




Exponential Form

e Constraining clique potentials to be positive could be inconvenient (e.g.,
the interactions between a pair of atoms can be either attractive or
repulsive). We represent a clique potential y(x.) in an unconstrained
form using a real-value "energy" function ¢.(x.):

v, (x,)=expi-¢,(x,)}

For convenience, we will call ¢.(x.) a potential when no confusion arises from the context.

e This gives the joint a nice additive strcuture

p(x)—exp{ Z{,ﬁ(x } —exp{—H(\’)J

ceC

where the sum in the exponent is called the "free energy":

Hx)=Y ¢.(x,)

ceC

e In physics, this is called the "Boltzmann distribution”.
e |n statistics, this is called a log-linear model.

-




Example: Boltzmann machines

o

e A fully connected graph with pairwise (edge) potentials on
binary-valued nodes (for x;, € {-1,+1}or x, €{0.1}) is called a

Boltzmann machine

P(x;,X,,X3,X,) = zexp

_iE‘{
7P

i

J

e Hence the overall energy function has the fo.rm:

H(x)=Y (3~ 100, (x, — 1) = (x— 1) O(x— 1)




Ising Model

e Nodes are arranged in a regular topology (often a regulaf
packing grid) and connected only to their geometric

neighbors.

0—OO0OO0O
00000 _
QOO 00O P(X)Zée:{pc{.;ﬁﬂ}{;{j+Z¢9m_};}}

56600

e Same as sparse Boltzmann machine, where Qj;&O iff 1,j are

neighbors.

e e.g., nodes are pixels, potential function encourages nearby pixels to have similar

intensities.

e Potts model: multi-state Ising model.

-




Restricted Boltzmann Machines

hidden units

visible units

p(x.h|0)=expl X6¢,(x)+ 20,6,(h)+ 26, ¢, (x.h)-A®) |

/




Properties of RBM

Factors are marginally dependent.

Factors are conditionally

independent given observations on

the visible nodes.
P(l|w)=11,P(,|w)

h~ p(h|x)
lterative Gibbs sampling. A -
Py

x~ p(x|h)

Learning with contrastive
divergence
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Conditional Random Fields

-~

&
A
&

e Discriminative

1
7(6.x)

po(y|x)= eXp{Z 0.f.(x.p.)

e Doesn’'t assume that features
are independent

e \When labeling X, future
observations are taken into
account

l
J




Conditional Models

e Conditional probability P(label sequence y | observation sequehce X)
rather than joint probability P(y, x)

e Specify the probability of possible label sequences given an observation
sequence

e Allow arbitrary, non-independent features on the observation
sequence X

e The probability of a transition between labels may depend on past
and future observations

e Relax strong independence assumptions in generative models




Conditional Distribution

e Ifthe graph G= (7, E) of Y is a tree, the conditional distribution over
the label sequence Y =Yy, given X =x, by the Hammersley Clifford
theorem of random fields is:

Po(V[X) o exp Z/“kfk(eay - X)+ Z 1.2, (v, ¥, X)
ecE I vel k
— xis a data sequence o))
— ylis alabel sequence k. -
— vis a vertex from vertex set V = set of label random variables X e X

— els an edge from edge set E over V

- f,and g, are given and fixed. g, is a Boolean vertex feature; 7, is a Boolean edge
feature

— ks the number of features

- 0=, Ay A, e, ). A, and i, are parameters to be estimated
- Y|, is the set of components of y defined by edge e

— yl|, I1s the set of components of y defined by vertex v




CRFs

B el |
Pe()’ ‘X) -~ Z(f)X) e:\plggcfc(x*)/c)J

e Allow arbitrary dependencies
on input

e Cligue dependencies on labels

e Use approximate inference for
general graphs

/




Summary: Cond. Indep. Semantics in MRF

Structure: an undirected
graph

« Meaning: a node is
conditionally independent of
every other node in the
network given its Directed
neighbors

« Local contingency functions
(potentials) and the cliques in
the graph completely
determine the joint dist.

« Give correlations between
variables, but no explicit way
to generate samples

™~




Where does the graph structure come
from?

The goal:

e Given set of independent samples (assignments of random
variables), find the best (the most likely?) graphical model
topology

ML Structural Learning for completely observed GMs

O & O B
DO DO > RO CAD
D) @b

(B,E,A,C,R)=(T,F,F,T,F)
(B,E,A,C,R)=(T,F, T,T,F)

(BJEIA!C’R)=(F?T!T!T!F)




e

Information Theoretical Interpretation of

ML

£(05,G:D)=log p(D|6;.G)

_IDQH(HI)(X”? HT(G] rT(G])]
_Z(ZIOEP(XHI h"T(G) IT(G))}

— JI Z

count(x,,X . ) \
Z. V log p(x, X.6): '9;?{5))

X ~K,ri; (G)

Z. p(x,. Xr.6) )log p(x; | X1.(6) '9;'|Jr,.(c;) )1

X ~I,ri; ()

M: # of data samples

From sum over data points to sum over count of variable states




e

Information Theoretical Interpretation of
ML

# For the fully observable case

((6,.G:D)=log p(D|6,.G)

."-';iﬂx,v,rf.zg]

MY Y %, o)l A 6")]

p(x:' e X;r!- ? 9;' T ) ) (:'-‘J:
= M’Z Z P X, () - _{G) 4 {) * )
f- P(X, ) px;)

p(,‘.‘f._ X1,6) '9;1,7,. @)

-M h(x ) oe D(x.
T D(Xe0)P() ] Z[;P(‘J“gp(n)f]

:MZ Z p X, )

=My I(-T: - X;q-(G)) My H (x;)

Decomposable score and a function of the graph structure




Structural Search
#® How many graphs over n nodes? ()(2” 2 )

# How many trees over n nodes?  (O(n!)

# But it turns out that we can find exact solution of an optimal
tree (under MLE)!
o Trick: in a tree each node has only one parent!

o Chow-Liu algorithm (1968)




Chow-L1u tree learning algorithm

# Objective function

f(QG__G;D)ZIOgﬁ(D 6’6-6) — C(G)=iMZj(x;fﬂX;TF(G))

=M I(x,.X, )~ M> H(x,)
# Chow-Liu algorithm:
e For each pair of variable x; and x;
J count(x;,x;)

Compute empirical distribution: 1f)()(}.__ Xj.) —
p(x,.x))

Compute mutual information: i;(XpX;): .ﬁ(l’fﬁ'f)log - .
’ ‘ Z ‘ p(x;)p(x;)

e Define a graph with node x,, ..., x,
Edge (l,j) gets weight Iﬁ(Xj.._Xj)




Chow-L1u tree learning algorithm

# Objective function

£(6,.G.D)=log p(D|6,.G)

- . = |C(G)=M In(xfl,xf_ )
- Mrz.](xf . X7, (G}} - M ZH(\}) Z 7(G)

# Chow-Liu algorithm:

Optimal tree BN

e Compute maximum weight spanning tree

e Direction in BN: pick any node as root, do breadth-first-search to define directions
e |-equivalence:

(A) @G) (E)
B) (© n) © ®
® ® @ @r-E

C(AH=1(AB+I1(AOY+1(C.,DY+I(C.E)




Structure Learning for General Graphs

e [heorem:

e The problem of learning a BN structure with at most d parents is
NP-hard for any (fixed) d=2

e Most structure learning approaches use heuristics
e EXxploit score decomposition
e Two heuristics that exploit decomposition in different ways

Greedy search through space of node-orders

Local search of graph structures




sSummary

# Undirected graphical models capture “relatedness”, “coupling”, “co-
occurrence”, “synergism”, etc. between variables

o Local and global independence properties via graph separation criteria

o Defined on clique potentials

# Can be used to define either joint or conditional distributions

& Generally intractable to compute likelihood due to presence of
“partition function”
o Not only inference but also likelihood-based learning is difficult in general

# Important special cases
a Ising models; RBMs; CRFs

# Learning GM structure
o Generally NP-hard

o Chow-Liu tree learning algorithm
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